Symplectic Geometry

Homework 3

Exercise 1. (10 points)
Let V be a $2 n$ dimensional vector space. Recall the definition of the exterior product:

- A tensor product of a k-linear map α and a m-linear map β is a $(k+m)$ linear map defined by

$$
\alpha \otimes \beta\left(v_{1}, \ldots, v_{m+k}\right)=\alpha\left(v_{1}, \ldots, v_{k}\right) \cdot \beta\left(v_{k+1}, \ldots, v_{k+m}\right)
$$

- The Alt of a k-linear map γ is defined by

$$
\operatorname{Alt}(\gamma)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sign}(\sigma) \gamma\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

- The exterior product of a k-linear map α and a m-linear map β is defined by

$$
\alpha \wedge \beta=\frac{(k+m)!}{k!m!} \operatorname{Alt}(\alpha \otimes \beta)
$$

Let ω be a skew symmetric bilinear form on V. Prove that ω is non-degenerate if and only if n-th fold exterior product of ω, i.e. $\omega^{n}=\omega \wedge \ldots \wedge \omega$ is nonzero.

Exercise 2. (10 points)
Let α and β be, respectively, k - and l-forms on a vector space V, and let v be a vector in V. Show that

$$
\iota_{v}(\alpha \wedge \beta)=\left(\iota_{v} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge \iota_{v} \beta
$$

Exercise 3. (10 points)
Prove that the exterior derivative $d: \Omega^{*}(M) \rightarrow \Omega^{*+1}(M)$ on a manifold M satisfies $d^{2}=0$. (Hint: use local description of d and the equality of mixed partial derivatives.)

Exercise 4. (10 points)
Prove Cartan's magic formula:

$$
\mathcal{L}_{X}=d \circ \iota_{X}+\iota_{X} \circ d
$$

A good strategy is to follow the steps:

1. Check the formula for 0-forms $\omega \in \Omega^{0}(M)=C^{\infty}(M)$.
2. Check that both sides commute with d.
3. Check that both sides are derivations of the algebra $\left(\Omega^{*}(M), \wedge\right)$. For instance, check that

$$
\mathcal{L}_{X}(\omega \wedge \alpha)=\left(\mathcal{L}_{X} \omega\right) \wedge \alpha+\omega \wedge\left(\mathcal{L}_{X} \alpha\right)
$$

4. Notice that, if U is the domain of a coordinate chart, then $\Omega^{*}(U)$ is generated as an algebra by $\Omega^{0}(U)$ and $d \Omega^{0}(U)$, i.e. every element in $\Omega^{*}(U)$ is a linear combination of wedge products in $\Omega^{0}(U)$ and elements in $d \Omega^{0}(U)$.

Bonus Exercise. (0 points)
Find expressions for $\iota_{X} \alpha$ in local coordinates.

